Nested classes in Java | Core Java Tutorial’

Nested Class

A class within another class is known as Nested class. The scope of the nested is bounded by the scope of
its enclosing class.

Nested Class

Static
Nested

Non-static
Nested

Static Nested Class

A satic nested class is the one that has static modifier applied. Because it is static it cannot refer to non-
static members of its enclosing class directly. Because of this restriction static nested class is seldom used.

Non-static Nested class

Non-static Nested class is most important type of nested class. It is also known as Inner class. It has access
to all variables and methods of Outer class and may refer to them directly. But the reverse is not true, that

is, Outer class cannot directly access members of Inner class.

One more important thing to notice about an Inner class is that it can be created only within the scope of
Outer class. Java compiler generates an error if any code outside Outer class attempts to instantiate Inner
class.



Nested

Non-static

Member Local
Class Class

Anonymous
Class

Example of Inner class

class Outer

{
public void display()

{

Inner in=new Inner();

in.show();

}

class Inner

{
public void show()
{
System.out.println("Inside inner");
¥
}
}

class Test

{

public static void main(String[] args)

{

Outer ot=new Outer();
ot.display();

}
}

Output :
Inside inner

Example of Inner class inside a method




class Outer
{
int count;
public void display()
{
for(int i=0;i<5;i++)
{
class Inner //Inner class defined inside for loop
{
public void show()
{
System.out.println("Inside inner "+(count++));
}
}

Inner in=new Inner();
in.show();
}

}

}

class Test

{

public static void main(String[] args)
{
Outer ot=new Outer();
ot.display();
}
}

Output :

Inside inner
Inside inner
Inside inner

Inside inner

A W N RO

Inside inner

Example of Inner class instantiated outside Outer class

class Outer
{
int count;
public void display()
{
Inner in=new Inner();

in.show();

}



class Inner

{

public void show()

{
System.out.println("Inside inner "+(++count));
}
}
}

class Test

{

public static void main(String[] args)
{
Outer ot=new Outer();
Outer.Inner in= ot.new Inner();
in.show();
}
}

Output :
Inside inner 1

Annonymous class

A class without any name is called Annonymous class.

interface Animal
{
void type();
}
public class ATest {
public static void main(String args[])
{
Animal an = new Animal(){ //Annonymous class created
public void type()
{
System.out.println("Annonymous animal");
}
}s
an.type();
}
}

Output :
Annonymous animal



Here a class is created which implements Animal interace and its name will be decided by the compiler. This

annonymous class will provide implementation of type() method.



